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Error Symmetrization in Quantum Computers
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Errors in quantum computers are of two kinds: sudden perturbations to isolated
qubits, and slow, random drifts of all the qubits. Isolated errors can be corrected
by using quantum codewords that represent a logical qubit in a redundant way,
by several physical qubits. On the other hand, slow drifts can be reduced, but
not completely eliminated, by means of symmetrization , namely by using many
replicas of the computer, and forcing their joint quantum state to be completely
symmetric. Several symmetrization strategies are examined and analyzed.

A computer is a physical system, subject to the ordinary laws of nature.

No error ever occurs in the application of these laws. What we call an error

is a mismatch between what the computer does and what we wanted it to

do. This may be caused by incorrect programming (software errors, which

I shall not consider here), or by imperfect hardware. The computer engineer’ s

problem is to design the hardware in such a way that common flaws, which
are unavoidable, will almost never cause errors in the final output (namely,

in the relevant parts of the final state of the computer).

In classical computers, logical bits, having values 0 or 1, are implemented

in a highly redundant way by bistable elements, such as magnetic domains.

The bistability is enforced by coupling the physical bits to a dissipative

environment. Errors may then occur because of thermal fluctuations and
other hardware imperfections. To take care of these errors, various correction

methods have been developed (Welsh, 1989, Chapter 4), involving the use

of redundant bits (which are implemented by additional bistable elements).

In quantum computers, the situation is more complicated: in spite of

their name, the logical ª qubitsº (quantum binary digits) are not restricted to
the discrete values 0 and 1. Their value can be represented by any point on
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the surface of a PoincareÂsphere. Moreover, any set of qubits can be in an

entangled state: none of the individual qubits has a pure quantum state, it is

only the state of all the qubits together that is pure (Peres, 1993, Chapter 5).
The continuous nature of qubit states implies that there can be no intrinsic

stabilizing mechanism, and error control becomes critical.

Here, a distinction must be made between quantum computers of the

Benioff type (Benioff, 1980; Feynman, 1986), where quantum hardware is

used for implementing classical logic, and computers that are fundamentally

quantal (Deutsch, 1985), and can do more than just mimic classical computa-
tion. In the former case, there are instants of time at which all the qubits

ought to represent definite values, 0 or 1. They are not then in a quantum

superposition, and error correction can be done as for a classical computer

(Peres, 1985). On the other hand, a computer of the Deutsch type usually is

an entangled state of all the qubits, and classical methods of error correction

are not applicable. What can be done then depends on the nature of the
anticipated errors.

In general, we may write the Hamiltonian of the computer as H 5 H0

1 H1, where H0 is the Hamiltonian of an ideal error-free computer and H1

represents the influence of the environment. The latter is unknown to the

computer designer, except statistically. That Hamiltonian acts on a Hilbert
space which is the tensor product of those representing the computer and

the environment. The designer’ s problem is to distill, from the computer ’ s

variables, a subset giving with probability close to 1 the correct result of the

computation, irrespective of the unknown form of H1 and of the initial state

state of the environment. Two different types of errors ought to be considered:

accidental large disturbances to isolated qubits (e.g., a residual gas molecule
may hit one of them), and small, random, uncorrelated drifts of all the qubits.

The first type of error can be corrected by codewords (Shor, 1995;

Steane, 1996a, b) that represent a logical qubit by means of several physical

qubits. The latter are in a highly entangled state chosen in such a way that,

if any one of the qubits gets entangled with an unknown environment , there

still is enough information stored in the other qubits to restore the codeword
and to unitarily disentangle it from the environment (Peres, 1998).

However, continuous random drifts of all the qubits cannot be eliminated

by using codewords. They can be reduced by symmetrizing the joint quantum

state of several identical computers (Berthiaume et al., 1994; Barenco et al.,
1997). The purpose of this paper is to discuss this symmetrization method

and some possible variants.
In its original version, the symmetrization method involved the use of

R identical replicas of the entire computer. At preset times, the joint quantum

state of the R computers is projected onto the symmetric subspace of their

common Hilbert space (for example, by measuring whether or not the state
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is symmetric, and aborting the computation if the answer is negative). As

shown below, if small errors randomly affect all the qubits, this projection

reduces the average error by a factor R. On the other hand, symmetrization
gives poor results if a single qubit goes completely astray: we then have a

nonsymmetric state that is almost orthogonal to the symmetric subspace, and

the computation is almost always aborted. Indeed, if one of the computers

has a state orthogonal to that of all the others, the probability is only 1/R
that the joint state will be projected onto the symmetric subspace; in that

case, the error is not eliminated, but rather uniformly spread over all the
R computers.

There is, however, a more efficient protocol for error correction by

symmetrization. The R computers can be arranged in pairs, and each one of

the R /2 pairs symmetrized separately. The process can then be repeated with

different pairing arrangements if we wish to further improve the symmetry.

With such a pairwise symmetrization, if a computer accidentally gets into a
state orthogonal to that of all the other ones, there is a 50% chance that the

pair containing the bad computer will be eliminated, and a 50% chance that

the error will be equally shared by the two computers. Repeating this process

many times, so that each computer has many partners, ultimately leads to

the elimination of a bad computer, together with one good one. There still
are R 2 2 good computers available for continuing the work.

A more complicated (and probably more realistic) model would be to

assume that any computer may occasionally fail when one of the logical

steps is executed. This event must be rare enough so that the total probability

of failure of any given computer during the entire computation is less than

1/2. Pairwise symmetrizations are performed between any two logical steps
(the pairs are chosen in such a way that each computer is compared with many

others during the complete computation). Most errors are then eliminated, and

the surviving computers contain, on average, less than one defective result.

In this theoretical model, an ª errorº means a state that is orthogonal to the

correct one. This notion has to be generalized to the case of less radical

errors. It is plausible that repeated pairwise symmetrizations are in general
preferable to a single overall symmetrization, but a formal proof is still needed.

The poor efficiency of the symmetrization method in the case of large,

isolated errors is due to frequent negative answers to the symmetry tests:

when a test fails, we must discard a pair of computers, if not the entire

process. However, there is no need of testing anything in order to force a

quantum state to stay in a symmetric subspace. A ª quantum measurementº
is not a supernatural event. It is an ordinary dynamical process, and any error

correction that may result from it should also be obtainable as a consequence

of a unitary evolution, governed by ordinary dynamical laws. Indeed, a much

simpler method for enforcing symmetry of the quantum state is to impose
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on the R computers an extra static potential that vanishes in the symmetric

subspace and has a very large value in all the orthogonal (asymmetric) states.

Effectively, in the R computers, any R homologous physical qubits behave
as if they were R bosons. Likewise, if the qubits of a codeword have an

internal symmetry, such as the cyclic symmetry of the codewords of Bennett

et al. (1996), we may protect their cyclic subspace by erecting around it a

high potential barrier.

The result of such a symmetrizing potential is analogous to a continuous

Zeno effect (Peres, 1993, pp. 392±400). To test its effectiveness, consider
the simple example of two computer memories, each one consisting of a

single qubit, initially in the state ( a
b ), which is unknown. We want these

computer memories to be stable: there should be no evolution of the two

qubits. The problem is to protect them against random fluctuations of the

environment. Let us use for this discussion the terminology and notations

appropriate to spin-1/2 particles. A symmetric state of the pair belongs to
the triplet (J 5 1) representation, while the singlet (J 5 0) is antisymmetric.

Consider the Hamiltonian

H0 5 (1 2 J2/2) V (1)

where V is a large, positive constant. Since J2 5 J (J 1 1), this potential

vanishes in the triplet state, and is equal to V for a singlet. As a simple

model of perturbation, let a phase error be generated by

H1 5 m s Az 1 n s Bz (2)

where m and n are constant coefficients much smaller than V , and the

subscripts A and B refer to the two qubits. This can also be written as

H1 5 e ( s Az 1 s Bz) 1 h ( s Az 2 s Bz) (3)

where e 5 ( m 1 n )/2 and h 5 ( m 2 n )/2. The e term in H1 is symmetric,

it commutes with H0, and therefore this kind of perturbation cannot be

eliminated by symmetrization. Indeed, the evolution of the qubit state ( a
b ) is

given (if we ignore the h term, for simplicity) by a (t) 5 a (0)e 2 i e t and b (t)
5 b (0)ei e t. If there were R qubits, instead of just two, the symmetric part of

the perturbation (which cannot be eliminated by symmetrization) would have

as its coefficient the arithmetic average of the individual perturbations. If the

latter are random and independent, that average is expected to be smaller

than the r.m.s. perturbation by a factor ! R, and therefore the error probability
is reduced by a factor R. No further improvement can be expected.

On the other hand, the error due to the antisymmetric part of H1 can be

considerably reduced. Written with the Bell basis (Braunstein et al., 1992),

the initial state of the pair is
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1 a
b 2 ^ 1 a

b 2 5
a 2 1 b 2

! 2
F + 1

a 2 2 b 2

! 2
F 2 1 ! 2 a b C + (4)

where F +, F 2 , and C + are the triplet states corresponding to Jx 5 0, Jy 5
0, and Jz 5 0, respectively. The antisymmetric part of the perturbation has

matrix elements given by

( s Az 2 s Bz) F 6 5 0 (5)

and

( s Az 2 s Bz) C 6 5 C 7 (6)

where C 2 is the singlet state. The nontrivial part of the Hamiltonian thus

involves only the C 6 subspace. We can write (ignoring for simplicity the e

contribution, which is symmetric)

H 5 H0 1 H1 5 1 0 h
h V 2 (7)

It is easy to find the eigenvalues and eigenvectors of this Hamiltonian. The

initial state (4) can be written as a linear combination of these two eigenstates,

and its time evolution obtained explicitly: the F 6 terms have constant ampli-
tudes, and, for h ¿ V , the C + term in (4) evolves as

C + ® e i h 2t/ V C + 1 ( h / V ) (e 2 i V t 2 1) C 2 (8)

where terms of order ( h / V )2 have been neglected. If we could make the

potential energy V arbitrarily large (as we do in an ideal ª quantum measure-
mentº context, where the interaction with the measuring apparatus is assumed

arbitrarily strong), then the C + term in the state vector would be perfectly

stabilized, and the C 2 term (which is antisymmetric) would never appear.

For large, but finite V , the amplitude of the C 2 term, initially zero, always

remains small. On the other hand, the C + term undergoes a slow secular

drift, which definitely is an error, but is nevertheless compatible with the
symmetry constraint. The same kind of drift also occurs for repeated discrete

symmetrization (Berthiaume et al., 1994) because the symmetric state

obtained at each step may contain a small residual error, and these errors

gradually accumulate.

These considerations can now be generalized from two to R computers,
each one having many qubits. It may seem that a global potential is required,

involving all of them at once, a proposal that would be a technological

nightmare. Fortunately, this is not necessary: it is enough to take R (R 2 1)/2

identical potentials, one for each pair of computers. If any two computers

are in a symmetric state, then all R computers are in a symmetric state, by
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definition. The comparison of two computers cannot be done bitwise: the

states of the complete computers have to be compared. However, this can

be achieved by means of a coherent sequence of two-qubit interactions, as
shown by Barenco et al. (1997).

Finally, let us note that the symmetrization method can also be applied

to individual codewords if the latter have an internal symmetry. For example,

the codewords of Bennett et al. (1996) are invariant under cyclic permutations

of their five qubits. These codewords have the property that if any four qubits

are correct, it is always possible to restore the remaining defective qubit.
However, the codeword error correction procedure definitely requires four

qubits to be correct, and it cannot cope with small drifts of all five qubits,

or even two of them. Therefore, it is helpful to test once in a while the cyclic

symmetry of the codeword: successful tests will reduce the amplitude of small

errors. Unfortunately, just as in the case of intercomputer symmetrization, an

unsuccessful test leads to an asymmetric state, and forces us to completely
discard the incorrect codeword. One of the logical qubits is then missing,

and the computation can proceed only if there is enough redundancy among

the logical qubits themselves (not only in their representation by physical

qubits), for example, if they are parts of higher order codewords.

Instead of continually testing the symmetry of a codeword, it is also
possible to force its physical qubits to respect that symmetry by introducing

a high potential barrier that prevents access to asymmetric states, as in Eq. (1):

H0 ® H0 1 V (1 2 P0 2 P1) (9)

where P0 and P1 are projection operators on the codewords that represent

the logical 0 and 1, respectively. In this way, an error that turns a codeword

state into a new quantum state lying in the orthocomplement of the legal
subspace can be produced only by investing a large amount of energy, V .

All corrigible errors are of this type, and are therefore prevented. However,

an incorrigible error, namely one that creates a state that is not orthogonal

to both codewords, cannot be prevented by the additional potential in Eq. (9).

Incorrigible errors remain uncorrected, of course. At most, their probability of

occurrence can be reduced.
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